Structure of the alamethicin pore reconstructed by x-ray diffraction analysis.

نویسندگان

  • Shuo Qian
  • Wangchen Wang
  • Lin Yang
  • Huey W Huang
چکیده

We reconstructed the electron density profile of the alamethicin-induced transmembrane pore by x-ray diffraction. We prepared fully hydrated multiple bilayers of alamethicin-lipid mixtures in a condition where pores were present, as established previously by neutron in-plane scattering in correlation with oriented circular dichroism. At dehydrated conditions, the interbilayer distance shortened and the interactions between bilayers caused the membrane pores to become long-ranged correlated and form a periodically ordered lattice of rhombohedral symmetry. To resolve the phase problem of diffraction, we used a brominated lipid and performed multiwavelength anomalous diffraction at the bromine K edge. The result unambiguously shows that the alamethicin pore is of the barrel-stave type consisting of eight alamethicin helices. This pore structure corresponds to the stable pores detected by neutron in-plane scattering in fully hydrated fluid bilayers at high peptide/lipid ratios, which are the conditions at which alamethicin was tested for its antibacterial activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation.

Antimicrobial peptides have two binding states in a lipid bilayer, a surface state S and a pore-forming state I. The transition from the S state to the I state has a sigmoidal peptide-concentration dependence indicating cooperativity in the peptide-membrane interactions. In a previous paper, we reported the transition of alamethicin measured in three bilayer conditions. The data were explained ...

متن کامل

Surface Hardness Measurment and Microstructural Characterisation of Steel by X-Ray Diffraction Profile Analysis

An X-ray diffraction line will broaden considerably when steels change into martensitic structure on quenching. The results presented in this paper show that X-ray diffraction technique can be employed for a rapid and nondestructive measurement of hardness of hardened steel. Measurement on various quenched and tempered steels showed that the breadth of its diffraction peak increased with increa...

متن کامل

Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation.

Recently we have shown that the free energy for pore formation induced by antimicrobial peptides contains a term representing peptide-peptide interactions mediated by membrane thinning. This many-body effect gives rise to the cooperative concentration dependence of peptide activities. Here we performed oriented circular dichroism and x-ray diffraction experiments to study the lipid dependence o...

متن کامل

Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO3)3.9H2O) and ammonium sulfate ((NH4)2SO4). The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were char...

متن کامل

Synthesis and Charaterization of Magensium Oxide Mesoporous Microstructures Using Pluronic F127

Mesoporous  MgO  microstructures  were  synthesized  using magnesium  acetate  tetrahydrate,  ammonium  oxalate  monohydrate and  Pluronic  F127  via  heating  at  40  °C  for  24  h  and  subsequent calcination. The mesoporous structure of magnesium oxide with the specific  surface  area  of  47m2 /g,  pore  volume  0.30  cm3 /g  and  the average pore size 24 nm is produced. According to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 94 9  شماره 

صفحات  -

تاریخ انتشار 2008